skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "DICKEY, JOHN"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Wind flow over coastal foredunes adapts to vegetation, resulting in spatial gradients in bed shear stresses that contribute to the formation of localized bedforms. Under- standing, and having the capability to numerically predict, the distribution of sedi- ment deposited within sparsely vegetated dune complexes is critical for quantifying the ecological, protective, and economic benefits of dune management activities. Data from wind tunnel experiments have indicated that there is a spatial lag from the canopy leading edge to a downwind location where sediment deposition first occurs. The length scale of this deposition lag is further quantified here using new field mea- surements of aeolian sediment transport across sparsely vegetated managed dune systems in Oregon, USA. We develop a deposition lag length scale parameter using both lab and this new field data and then incorporate this parameter into the process-based aeolian sediment transport model, Aeolis, which also includes a new far-field shear stress coupler. Results from numerical simulations suggest that the spatial deposition lag effect is significant for model skill in sparsely vegetated dunes. We observe with field and laboratory observations that, as canopy density increases, the length of the deposition lag decreases. As such, within the model framework the implementation of the deposition lag length does not affect the results of models of coastal dune geomorphological evolution within higher density canopies. Dune can- opy density can vary due to natural (e.g., storm overwash, burial, die-off) or anthro- pogenic (e.g., managed plantings, dune grading) processes. 
    more » « less
  2. The Magellanic Stream (MS), a tail of diffuse gas formed from tidal and ram pressure interactions between the Small and Large Magellanic Clouds (SMC and LMC) and the Halo of the Milky Way, is primarily composed of neutral atomic hydrogen (HI). The deficiency of dust and the diffuse nature of the present gas make molecular formation rare and difficult, but if present, could lead to regions potentially suitable for star formation, thereby allowing us to probe conditions of star formation similar to those at high redshifts. We search for HCO+ ,HCN,HNC,andC2H using the highest sensitivity observations of molecular absorption data from the Atacama Large Millimeter Array (ALMA) to trace these regions, comparing with HI archival data from the Galactic Arecibo L-Band Feed Array (GALFA) HI Survey and the Galactic All Sky Survey (GASS) to compare these environments in the MS to the HI column density threshold for molecular formation in the Milky Way. We also compare the line of sight locations with confirmed locations of stars, molecular hydrogen, and OI detections, though at higher sensitivities than the observations presented here. 
    more » « less
  3. The U.S. Pacific Northwest (PWN) coastal dunes are mainly colonized by two non-native beachgrass species (i.e., Ammophila arenaria and A. breviligulata) and a native dune grass (Leymus mollis) that capture sand and build dunes of different morphology. Recently, a hybrid beachgrass was discovered with unknown consequences for dune evolution. We set up a common garden experiment including seven treatments and two control plots to understand the effect of native and non-native plant species on sand accretion and dune morphological evolution. After 1.6 years, sand volume increased the most in the non-native species plots with levels at least twice as high for A. arenaria as compared to the other plots. The hybrid species had moderate sand accretion but a survival rate of 1.4 and 2.1 times higher than its parent species and native species, respectively. These results provide new insights for U.S. PNW coastal dune management. 
    more » « less
  4. Abstract We investigate the kinematic properties of Galactic H ii regions using radio recombination line (RRL) emission detected by the Australia Telescope Compact Array at 4–10 GHz and the Jansky Very Large Array at 8–10 GHz. Our H ii region sample consists of 425 independent observations of 374 nebulae that are relatively well isolated from other, potentially confusing sources and have a single RRL component with a high signal-to-noise ratio. We perform Gaussian fits to the RRL emission in position-position–velocity data cubes and discover velocity gradients in 178 (42%) of the nebulae with magnitudes between 5 and 200 m s − 1 arcsec − 1 . About 15% of the sources also have an RRL width spatial distribution that peaks toward the center of the nebula. The velocity gradient position angles appear to be random on the sky with no favored orientation with respect to the Galactic plane. We craft H ii region simulations that include bipolar outflows or solid body rotational motions to explain the observed velocity gradients. The simulations favor solid body rotation since, unlike the bipolar outflow kinematic models, they are able to produce both the large, >40 m s − 1 arcsec − 1 , velocity gradients and also the RRL width structure that we observe in some sources. The bipolar outflow model, however, cannot be ruled out as a possible explanation for the observed velocity gradients for many sources in our sample. We nevertheless suggest that most H ii region complexes are rotating and may have inherited angular momentum from their parent molecular clouds. 
    more » « less
  5. null (Ed.)
  6. Abstract Using the Australian Square Kilometre Array Pathfinder to measure 21 cm absorption spectra toward continuum background sources, we study the cool phase of the neutral atomic gas in the far outer disk, and in the inner Galaxy near the end of the Galactic bar at longitude 340°. In the inner Galaxy, the cool atomic gas has a smaller scale height than in the solar neighborhood, similar to the molecular gas and the super-thin stellar population in the bar. In the outer Galaxy, the cool atomic gas is mixed with the warm, neutral medium, with the cool fraction staying roughly constant with the Galactic radius. The ratio of the emission brightness temperature to the absorption, i.e., 1 − e − τ , is roughly constant for velocities corresponding to Galactic radius greater than about twice the solar circle radius. The ratio has a value of about 300 K, but this does not correspond to a physical temperature in the gas. If the gas causing the absorption has kinetic temperature of about 100 K, as in the solar neighborhood, then the value 300 K indicates that the fraction of the gas mass in this phase is one-third of the total H i mass. 
    more » « less
  7. Abstract We present the first unbiased survey of neutral hydrogen absorption in the Small Magellanic Cloud. The survey utilises pilot neutral hydrogen observations with the Australian Square Kilometre Array Pathfinder telescope as part of the Galactic Australian Square Kilometre Array Pathfinder neutral hydrogen project whose dataset has been processed with the Galactic Australian Square Kilometre Array Pathfinder-HI absorption pipeline, also described here. This dataset provides absorption spectra towards 229 continuum sources, a 275% increase in the number of continuum sources previously published in the Small Magellanic Cloud region, as well as an improvement in the quality of absorption spectra over previous surveys of the Small Magellanic Cloud. Our unbiased view, combined with the closely matched beam size between emission and absorption, reveals a lower cold gas faction (11%) than the 2019 ATCA survey of the Small Magellanic Cloud and is more representative of the Small Magellanic Cloud as a whole. We also find that the optical depth varies greatly between the Small Magellanic Cloud’s bar and wing regions. In the bar we find that the optical depth is generally low (correction factor to the optically thin column density assumption of $$\mathcal{R}_{\mathrm{HI}} \sim 1.04$$ ) but increases linearly with column density. In the wing however, there is a wide scatter in optical depth despite a tighter range of column densities. 
    more » « less